A Low-Order Model for Vortex Shedding Patterns Behind Vibrating Flexible Cables

نویسندگان

  • David J. Olinger
  • D. J. Olinger
چکیده

A recent focus in studies of vortex shedding behind circular cylinders has been on the use of low-order dynamical systems such as circle maps to predict wake dynamics. These purely temporal models have been limited by their inability to describe three-dimensional spatial flow variations along the cylinder span, a hallmark of transitional flows such as the cylinder wake. In the present work this limitation is overcome through development of a spatial-temporal map lattice which utilizes a series of coupled circle map oscillators along the cylinder span. This model allows for the study of vortex shedding patterns and wake dynamics behind vibrating flexible cables. Required input for the model includes the forcing frequency, amplitude, mode shape, aspect ratio and wavelength of the cable, Reynolds number, vortex convection velocity, and various phase angles. Model output parameters studied in this work include vortex shedding patterns and wake response frequency. Standing wave mode shapes and traveling waves along the cable span are modeled. Lacelike vortex patterns are observed for the standing wave case. A physical mechanism for the lacelike patterns is postulated. For traveling waves oblique shedding patterns are confirmed. Nonharmonic forcing outside the classical lock-on region yields vortex dislocation patterns in the wake. Honeycomb patterns are also observed for higher-order mode shapes at large forcing amplitudes. The current work establishes a new class of models based on circle maps for modeling spatially varying cylinder wakes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects Of Frequency Variation At Inlet Flow On The Vortex Shedding Frequency Behind A Circular Cylinder

In many applications the flow that past bluff bodies has frequency nature (oscillated) and it is not uniform. This kind of flow has effects on the formation of vortex shedding behind bluff bodies. In this paper the flow around a circular cylinder was numerically simulated. The effects of frequency variation at inlet flow on the vortex shedding frequency were investigated. The transient Two-Dime...

متن کامل

A self-learning coupled map lattice for vortex shedding in cable and cylinder wakes.

A coupled map lattice (CML) with self-learning features is developed to model flow over freely vibrating cables and stationary cylinders at low Reynolds numbers. Coupled map lattices that combine a series of low-dimensional circle maps with a diffusion model have been used previously to predict qualitative features of these flows. However, the simple nature of these CML models implies that ther...

متن کامل

A Numerical Investigation on Aerodynamic Coefficients of Solar Troughs Considering Terrain Effects and Vortex Shedding

Recently, increase in the cost of fossil fuels and taking into consideration the environmental effects of exploiting them, caused many researchers and governments to find some ways to make use of renewable energies more cost-effectively. Solar energy is a category of renewable energies which could be harvested via several technologies. One of the most practical methods is using parabolic trough...

متن کامل

An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow

In the present study, an experimental investigation was performed to characterize the vortex induced vibration (VIV) of a flexible cable in an oncoming shear flow. The VIV tests were conducted in a wind tunnel with a flexible cable model. It was found that, under different oncoming velocity profiles, the cable model behaved in single-mode and multi-mode VIVs. The displacement amplitudes of the ...

متن کامل

Drag coefficient and strouhal number analysis of cylindrical tube in two phase flow

In many industrial equipment such as boilers and heat exchangers, the cylindrical tubes are exposed to the gas- liquid two phase flow. For any immersed body in flow field vortex shedding is created with a frequency that may be constant or variable, according to conditions such as flow rates, geometry of body, and etc. The failure will happen in the equipment, when this frequency is close to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013